15 research outputs found

    Modelling extreme concentration from a source in a turbulent flow over rough wall

    No full text
    The concentration fluctuations in passive plumes from an elevated and a groundlevel source in a turbulent boundary layer over a rough wall were studied using large eddy simulation and wind tunnel experiment. The predictions of statistics up to second order moments were thereby validated. In addition, the trend of relative fluctuations far downstream for a ground level source was estimated using dimensional analysis. The techniques of extreme value theory were then applied to predict extreme concentrations by modelling the upper tail of the probability density function of the concentration time series by the Generalised Pareto Distribution. Data obtained from both the simulations and experiments were analysed in this manner. The predicted maximum concentration (?0) normalized by the local mean concentration (Cm) or by the local r.m.s of concentration fluctuation (crms), was extensively investigated. Values for ?0/Cm and ?0/crms as large as 50 and 20 respectively were found for the elevated source and 10 and 15 respectively for the ground-level source

    Large-eddy simulation of dispersion: comparison between elevated source and ground level source

    No full text
    Large-eddy simulation (LES) is used to calculate the concentration fluctuations of passive plumes from an elevated source (ES) and a ground-level source (GLS) in a turbulent boundary layer over a rough wall. The mean concentration, relative fluctuations and spectra are found to be in good agreement with the wind-tunnel measurements for both ES and GLS. In particular, the calculated relative fluctuation level for GLS is quite satisfactory, suggesting that the LES is reliable and the calculated instantaneous data can be used for further post-processing. Animations are shown of the meandering of the plumes, which is one of the main features to the numerical simulations. Extreme value theory (EVT), in the form of the generalized Pareto distribution (GPD), is applied to model the upper tail of the probability density function of the concentration time series collected at many typical locations for GLS and ES from both LES and experiments. The relative maxima (defined as maximum concentration normalized by the local mean concentration) and return levels estimated from the numerical data are in good agreement with those from the experimental data. The relative maxima can be larger than 50. The success of the comparisons suggests that we can achieve significant insight into the physics of dispersion in turbulent flows by combining LES and EVT

    Large-Eddy Simulation of boundary layer separation and transition at a change of surface curvature

    No full text
    Transition arising from a separated region of flow is quite common and plays an important role in engineering. It is difficult to predict using conventional models and the transition mechanism is still not fully understood. We report the results of a numerical simulation to study the physics of separated boundary-layer transition induced by a change of curvature of the surface. The geometry is a flat plate with a semicircular leading edge. The Reynolds number based on the uniform inlet velocity and the leading-edge diameter is 3450. The simulated mean and turbulence quantities compare well with the available experimental data. The numerical data have been comprehensively analysed to elucidate the entire transition process leading to breakdown to turbulence. It is evident from the simulation that the primary two-dimensional instability originates from the free shear in the bubble as the free shear layer is inviscidly unstable via the KelvinHelmholtz mechanism. These initial two-dimensional instability waves grow downstream with a amplification rate usually larger than that of TollmienSchlichting waves. Three-dimensional motions start to develop slowly under any small spanwise disturbance via a secondary instability mechanism associated with distortion of two-dimensional spanwise vortices and the formation of a spanwise peakvalley wave structure. Further downstream the distorted spanwise two-dimensional vortices roll up, leading to streamwise vorticity formation. Significant growth of three-dimensional motions occurs at about half the mean bubble length with hairpin vortices appearing at this stage, leading eventually to full breakdown to turbulence around the mean reattachment point. Vortex shedding from the separated shear layer is also observed and the 'instantaneous reattachment' position moves over a distance up to 50% of the mean reattachment length. Following reattachment, a turbulent boundary layer is established very quickly, but it is different from an equilibrium boundary layer

    Numerical Study of Bypass Transition

    No full text
    No description supplie

    Large-eddy simulation of separated leading-edge flow in general co-ordinates

    No full text
    An incompressible separated transitional boundary-layer flow on a flat plate with a semi-circular leading edge has been simulated and a very good agreement with the experimental data has been obtained, demonstrating how this technique may be applied even when finite difference formulae are used in the periodic direction. The entire transition process has been elucidated and vortical structures have been identified at different stages during the transition process. Efficient numerical methods for the large-eddy simulation (LES) of turbulent flows in complex geometry are developed. The methods used are described in detail: body-fitted co-ordinates with the contravariant velocity components of the general NavierStokes equations discretized on a staggered mesh with a dynamic subgrid-scale model in general co-ordinates. The main source of computational expense in simulations for incompressible flows is due to the solution of a Poisson equation for pressure. This is especially true for flows in complex geometry. Fourier techniques can be employed to speed up the pressure solution significantly for a flow which is periodic in one dimension. With simple conditions fulfilled, it is possible to Fourier transform a discrete elliptic equation such as the Poisson equation for the pressure field, decomposing the problem into a set of two-dimensional problems of similar type (Poisson-like). Even when a complex geometry and body-fitted curvilinear co-ordinates are used in the other two dimensions, as in the present case, the resulting Fourier-transformed 2D problems are much more efficiently solved than the 3D problem by iterative mean

    Large-eddy simulation of turbulent flow over a rough surface. Boundary-Layer Meteorol

    No full text
    Abstract. A family of wall models is proposed that exhibits more satisfactory performance than previous models for the large-eddy simulation (LES) of the turbulent boundary layer over a rough surface. The time and horizontally averaged statistics such as mean vertical profiles of wind velocity, Reynolds stress, turbulent intensities, turbulent kinetic energy and also spectra are compared with wind-tunnel experimental data. The purpose of the present study is to obtain simulated turbulent flows that are comparable with wind-tunnel measurements for use as the wind environment for the numerical prediction by LES of source dispersion in the neutral atmospheric boundary layer

    Balancing errors in LES

    No full text
    Errors in LES are easily made and hard to control. We identify the main local sources of error involved in LES. The non-commutation terms arising in complex flows when using nonuniform filter-widths are analysed in some detail. The magnitudes of discretisation and modelling errors arising in a turbulent mixing layer are determined and their interaction is shown to lead to partial cancellation of errors for various spatial discretisation methods

    Subgrid-modelling in LES of Compressible Flow

    No full text
    Subgrid-models for Large Eddy Simulation (LES) of compressible turbulent flow are tested for the three-dimensional mixing layer. For the turbulent stress tensor the recently developed dynamic mixed model yields reasonable results. A priori estimates of the subgrid-terms in the filtered energy equation show that the usually neglected pressure-dilatation and turbulent dissipation rate are as large as the commonly retained pressure-velocity subgrid-term. Models for all these terms are proposed: a similarity model for the pressure-dilatation, similarity and k-dependent models for the turbulent dissipation rate and a dynamic mixed model for the pressure-velocity subgrid-term. Actual LES demonstrates that for a low Mach number all subgrid-terms in the energy equation can be neglected, while for a moderate Mach number the effect of the modelled turbulent dissipation rate is larger than the combined effect of the other modelled subgrid-terms in the filtered energy equation
    corecore